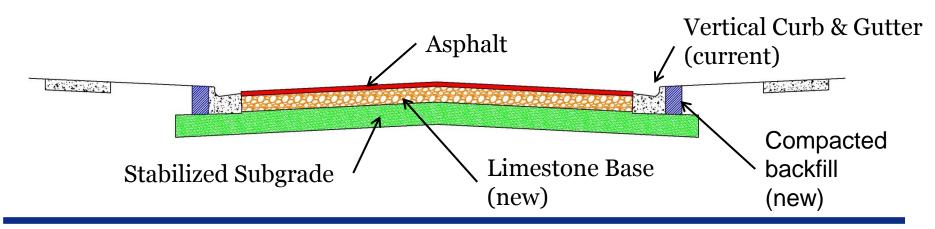
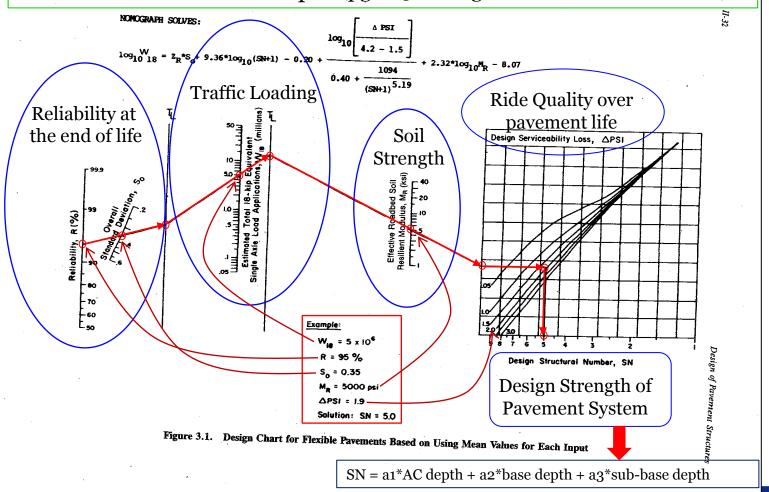

Design Standards Ordinance


Council Presentation February 19, 2013

Residential Street Section improvements:

- 30 Year Design Life based on American Association of State Highway and Transportation Officials (AASHTO) Guide for Design of Pavement Structures
 - Based on on-site soil conditions
 - Clay soils
 - Sandy soils
 - Utilizing route specific traffic data converted to Equivalent Single-Axle Loadings (ESAL)


30 Year Analysis for a typical Residential Street (100 Homes)							
Vehicle Types	Average Daily Trips	Growth Factor* (2% annual)	Design Traffic	ESAL Factor	Design ESAL		
Automobiles	900	40.57	13,327,245	0.0008	10,662		
Buses	4	40.57	59,232	0.6806	40,313		
Pickup/Panel Trucks	100	40.57	1,480,805	0.0122	18,066		
2 Axle Trucks	0.5	40.57	7,404	0.189	1,399		
5 Axle Semi Trailers	0.2	40.57	2,962	2.3187	6,867		
				Total ESALs:	77,307		

^{*}For a typical residential subdivision there would be no growth factor and so the 30 year ESAL count would be: 57,000

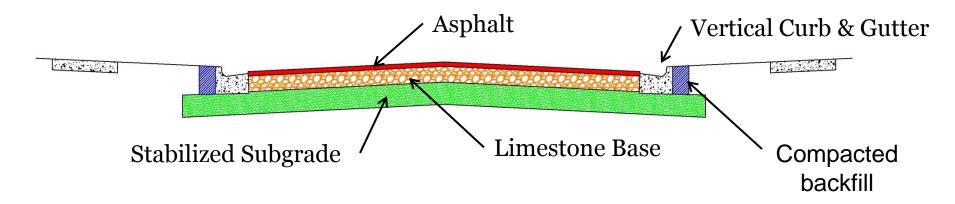


Figure 3.1 Design Chart for Flexible Pavements Based on Using Mean Values for Each Input (pg II-32 Design of Pavement Structures)

- SN = a1*AC depth + a2*base depth + a3*sub-base depth
 - From Design Example: SN = 5

Structural Material	a value	depth (in)	Sn
Asphalt	0.42	4	1.68
Crushed Limestone	0.18	12	2.16
Lime Stabilized Base	0.11	12	1.32
			5.16

SH 286 (Crosstown)

Freeway ESALs: 7,400,000 (20 year count)

6" Asphalt

12" Limestone

8" Stabilized
Subgrade

S. Staples St.*

Arterial ESALs: 9,150,000 (30 year count)

6 ½" Asphalt

17" Limestone

12" Compacted
Subgrade

Williams Dr.*

Collector ESALs: 3,360,000 (30 year count)

4" Asphalt

10" Limestone

12" Compacted
Subgrade

*These two streets are being built with a concrete pavement section, which was also designed to a 30 year life.

