

Drinking Water Treatment: the Basics

Corpus Christi City Council Meeting | June 14, 2016

Death Rate for Typhoid Fever

United States, 1900-1960

Source: U.S. Centers for Disease Control and Prevention, Summary of Notifiable Diseases, 1997.

Disinfection By-products (DBPs)

By-products of reactions between disinfectant (chlorine, ozone, etc.) and natural organic matter and/or bromide present in source water

Disinfectant + Natural Organic Matter → DBPs

Potential health impacts of DBPs

- Cancer
 - Bladder, colon and rectal
- Reproductive?

All disinfectants form disinfection byproducts!!!

Stage 2 D/DBP Rule

- DBPs of concern:
 - Trihalomethanes (THMs)
 - Haloacetic acids (HAAs)
- Intended to reduce risk and address localized concerns
- Promulgated 2006
- DBP Control Options
 - Limit natural organic matter
 - Adjust disinfection practices
 - Remove after formation

Stage 2 Disinfectants and Disinfection Byproducts Rule: A Quick Reference Guide For Schedule 1 Systems

Title	Stage 2 Disinfectants and Disinfection Byproducts Rule (Stage 2 DBPR) 71 FR 388, January 4, 2006 Vol. 71, No. 2	
Purpose	To increase public health protection by reducing the potential risk of adverse health effects associated with disinfection byproducts (DBPs) throughout the distribution system. Builds on the Stage 1 Disinfectants and Disinfection Byproducts Rule (Stage 1 DBPP) by focusing on monitoring for and reducing concentrations of two classes of DBPs - TIMM and HAAS - ind rinkingly water.	
General Description	Stage 2 DBPR requires some systems to complete an Initial Distribution System Evaluation (IDSE) to characterize DBP levels in their distribution systems and identify locations to monitor DBPs for Stage 2 DBPR compliance. The Stage 2 DBPR bases TTHM and HAA5 compliance on a locational running annual average (LRAA) calculated at each monitoring location.	
Utilities Covered *	All community water systems (CWSs) and nontransient noncommunity water systems (RTNCWSs) that either add a primary or residual disinfectant other than ultraviolet light, or deliver water that has been treated with a primary or residual disinfectant other than ultraviolet light.	
	Schedule 1 includes CWSs and NTNCWSs serving 100,000 or more people OR CWSs and NTNCWSs that are part of a combined distribution system in which the largest system serves 100,000 or more people.	

* NTNCWSs serving < 10,000 people do not need to complete any of the IDSE options, but must conduct Stage 2 DBPI

Regulated Contaminants	MCLG (mg/L)	MCL (mg/L) 0.080 LRAA
Total Trihalomethanes (TTHM)		
Chloroform Bromodichloromethane Dibromochloromethane Bromoform	0.07 20ro 0.06 2ero	
Five Haloacetic Acids (HAA5)		0.060 LRAA
Monochloroacetic acid Dichloroacetic acid Trichloroacetic acid Bromoacetic acid	0.07 29F0 0.02	

IDSE Option	Description		
Standard Monitoring	Standard monitoring is one year of increased monitoring for TTHM and HAA5 in addition to the data being collected under Stage 1 DBPR. These data will be used with Stage 1 DBPR data to select Stage 2 DBPR TTHM and HAA5 compliance monitoring locations. Any system may conduct standard monitoring to meet the IDSE requirements of the Stage 2 DBPR.		
System Specific Study (SSS)	Systems that have extensive TTHM and HAA5 data (including Stage 1 DBPR compliance data) or technical expertise to prepare a hydraulic model may choose to conduct a system specific study to select Stage 2 DBPR compliance monitoring locations.		
40/30 Certification!	The term "40/30" refers to a system that during a specific time period has all individual Stage 1 IBBR compliance samples less than or equal to 0.040 mg/L for TTHM and 0.030 mg/L for HAA5 and has no monitoring violations during the same time period. These systems have no IDSE monitoring requirements, but will still need to conduct Stage 2 DBRR compliance monitoring.		
Very Small System (VSS) Waiver 1	Systems that serve fewer than 500 people and have eligible TTHM and HAA5 data can qualify for a VSS Weiver and would not be required to conduct IDSE monitoring. These systems have no IDSE monitoring requirements, but will still need to conduct Stage 2 DBPR compliance monitoring.		

Regulatory Challenges

Disease Control

- disinfection requirements -- CT
- particle removal

Disinfection Byproduct Control

- Further control of THM and HAA levels
- other DBPs

Types of Disinfectant Systems

Chemical agents

- chlorine (Cl₂)
- chloramines (NH₂Cl)
- chlorine dioxide (CIO₂)
- ozone (O_3)

Physical agents

- UV light irradiation
- membranes

Sources of Natural Organic Matter

DBPs

Disinfectant + Bacteria → Dead Bacteria

Disinfectant + Virus → Dead Virus

Disinfectant + Giardia cyst → Dead Giardia cyst

Disinfectant + Natural Organic Matter → DBPs

All disinfectants form disinfection byproducts!!!

DBP Formation

NOM = natural organic matter

Reduce these to minimize formation

Chlorinated Organics

- THMs
- HAAs
- many others

Affected by: chlorine dose, NOM concentration, pH, temperature, time

The THMs

Chloroform

Bromodichloromethane

Chlorodibromomethane

Bromoform

DBP Control: Understand your water system

Source

Treatment Plant

Distribution System

Typical Conventional Water Filtration Plant

THE COAGULATION PROCESS

Goal: to rapidly disperse chemicals to promote particle aggregation

THE FLOCCULATION PROCESS

Goal: to impart slow mixing to promote particle-particle collisions

TAPERED FLOCCULATION

THE SEDIMENTATION PROCESS

Goal: to allow flocculated particles to settle out

DBP Control

Control options:

- Alter chlorination scheme
 - Reduce chlorine dose
 - Move point of chlorination to downstream of natural organic matter removal
- Optimize natural organic mater removal (e.g., improved mixing, coagulation chemistry, pH, GAC, (MIEX®)
- Use alternative disinfectants
 - Use of ozone, chlorine dioxide typically results in lower concentrations of DBPs
 - UV disinfection
 - Chloramines

- Optimize distribution system operations
 - Reduce travel time in distribution system
 - Change pH
 - Replace aging infrastructure
- · Remove DBPs after formation
 - Aeration for THMs; GAC for HAAs

History of chloramines

- First used by Denver in 1917
- Gained popularity through until 1936 due to higher stability, longer lasting residual, and fewer tastes and odors than free chlorine
- Usage dropped during World War II due to ammonia shortage
- Increased after the EPA THM Rule in 1979.
- Today roughly 30% of all systems use chloramines (50% in TX, FL)
- EPA estimates up to 57% of all surface water plants will use chloramine to comply with the Stage 2 regulations

Chloramines

Chloramines are formed when chlorine (Cl₂) reacts with ammonia (NH₃)

- Significantly lower levels of THMs and HAAs than free chlorine
- Better control of *Legionella* in building plumbing systems
- More stable residual than free chlorine

Issues

- Nitrification loss of disinfectant residual
- harmful sensitivities to dialysis patients
- harmful sensitivities to fish

Chloramines

$$NH_3 + HOCI \leftrightarrow NH_2CI + H_2O$$
 monochloramine

$$NH_2CI + HOCI \leftrightarrow NHCI_2 + H_2O$$
 dichloramine

$$NHCl_2 + HOCl \leftrightarrow NCl_3 + H_2O$$
 trichloramine

CI2:NH3-N Ratio	Dominant Species
<u><</u> 5:1	Monochloramine
5:1 to 7.6:1	Dichloramines
> 7.6:1	Free Chlorine

Treatment Options: Advanced Natural Organic Matter Removal

- Activated Carbon
- Membranes
- Ion Exchange (MIEX®)

Activated Carbon

- Several options for using activated carbon
 - Pretreatment powdered activated carbon (PAC)
 - Filter adsorbers Granular activated carbon in place of anthracite
 - Post-Filter granular activated carbon contactors

Annual Cost of Compliance Technology Options

Next Steps

- Source monitoring
- Plant improvements
- Distribution system improvements
- Operational changes
- Consideration of Alternative Treatments