Department of Public Works

Staff Update on City Council Policy Nº 28: Award Guidelines for Arterial and Collector Streets with Concrete or Asphalt

Council Presentation April 27, 2021

Policy Amendments

Policy 28 Amended by Council on October 27, 2020:

"If the project contains a majority subgrade with a **Plasticity Index** (**PI**) greater than 30 or deemed as moderately to highly expansive soil by the design Geotechnical Engineer, the asphalt pavement alternative will be used by City Council when deciding to award a contract for arterial and collector roadways.

"If the PI is less than 30 and the construction cost for concrete pavement is within \$125,000 per lane mile (\$17.75/square yard), which should represent the future anticipated maintenance cost, of the asphalt pavement alternative, the concrete pavement alternative will be used by City Council when deciding to award a contract for arterial and collector roadways. This policy will be updated annually."

Council Policy 28 Amended by Council on October 27, 2020:

- * Amended policy now considers an additional variable in the project application type decision matrix
 - ** Project site's **Plasticity Index (PI)**, a geotechnical soil characteristic, must be evaluated by laboratory prior to RFB release, contractor bidding, and Council award
- * Expansive soils (i.e. clay) High PI (30+)
 - ** Subgrade swells with increased rainfall, shrinks with decreased rainfall
- ***** Non-Expansive Soils Low PI (≤ 30)
 - ** More stable sub-grade, less movement over life

- Roadway Asset Services, LLC (RAS) performed Lifecyle Cost Analysis (LCCA)
- Analysis considered lifetime maintenance activities and their costs and applied discount and inflation rates to determine Present Worth Value (PWV)
- * 40-year analysis timeline to establish baseline comparison
- * Lifecyle Cost Analysis Resulted in 4 Key Conclusions:
 - 1. Project's subgrade's PI is > 30 (clay), Asphalt Pavement prevails
 - 2. If Concrete's lifetime maintenance cost is within \$125,000 per lane mile of Asphalt's lifetime maintenance cost, Concrete Pavement prevails
 - 3. Residential streets always recommended Asphalt Pavement
 - 4. If adjacent section is concrete, Concrete Pavement recommended for continuity

Non-Expansive Soils

Concrete Pavement on Arterials

Asphalt Pavement on Arterials

Application (Subgrade Soil)	Present Worth Value (\$/lane mile)	Maintenance Difference
Concrete Arterial (Non-Expansive)	\$472,190	
Asphalt Arterial (Non-Expansive)	\$600,698	\$128,509

Non-Expansive Soils

***** Soil Characteristics

- ** Sandy, allows for more drainage
- ** No shrinkage or swell
- * Repairs (Outside of Normal Maintenance Cycles)

** Concrete Pavement: Cracks

- * Repairs involve crack and joint sealing
- * Estimated repair duration is 0.5 days
- ** Asphalt Pavement: Pavement Failures
 - * Repair of base and pavement with a mill & overlay
 - ***** Estimated repair duration is 1 2 days

Expansive (Clay) Soils

Concrete Pavement on Arterials

Asphalt Pavement on Arterials

Application (Subgrade Soil)	Present Worth Value (\$/lane mile)	Maintenance Difference
Concrete Arterial (Expansive)	\$605,055	
Asphalt Arterial (Expansive)	\$623,099	\$18,046

***** Soil Characteristics

** Moderate to high swell potential

- * Repairs (Outside of Normal Maint. Cycle)
 - ** Concrete: Panel lift of several inches
 - * Repairs involve panel replacements
 - * Estimated repair duration is 7 days
 - ** Asphalt: Pavement Failures
 - * Repair of street base and pavement with a mill & overlay
 - ***** Estimated repair duration is 1 2 days

Additional Conclusions

Residential Streets

- * Recapitalization costs not financially beneficial
- * Lower traffic loads do <u>not</u> warrant concrete pavement structure
- * Higher cost for utility cut repairs over life of asset
- * Reconstruction difficult in residential areas
- * Asphalt Pavement recommended

Pavement Continuity

If project is adjacent to an existing concrete section,
Concrete Pavement recommended

Final Recommendations

- 1. Geotechnical Soil Conditions
 - * When Plasticity Index (PI) of subgrade is >30, Asphalt Pavement recommended
- 2. Cost Differential Minimal to Existing Recommendation
 - When the lifetime maintenance cost difference of concrete is below \$125,000/lane mile, Concrete Pavement recommended

Final Recommendations

3. Residential Streets

* Due to under ground utilities and light-moderate usage, **Asphalt Pavement** recommended

4. Pavement Continuity

* If project is adjacent to an existing concrete pavement section, **Concrete Pavement** recommended

Questions?